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Abstract. A ferroelectric ice model or KDP model, after the Slater KDP model for a square 
lattice, is formulated on a triangular lattice and solved for all temperatures. It is found that 
this system undergoes a phase transition of the first order into a frozen ferroelectric state. 

1. Introduction 

In this paper we solve exactly a lattice model in statistical mechanics that can be regarded 
as the analogue for the triangular lattice of the KDP model on the square lattice. 

An ‘ice-type’ model is one in which arrows are placed on the bonds of a lattice of 
even coordination number so that at each vertex there are as many arrows in as out. 
Energies are associated with the various possible arrangements of arrows at each 
vertex. We attempt to calculate the partition function and free energy for this type of 
model. 

Lieb (1967a, b) and Sutherland (1967) have shown that such models can be solved 
exactly on a square lattice. They exhibit two types of phase transition : an infinite-order 
transition to an ordered antiferroelectric phase (the F model; Lieb 1967a), and a first- 
order transition to a frozen ferroelectric phase (the KDP model; Lieb 1967b). 

Baxter (1969, 1972) has considered a rotationally-invariant ice-type model on a 
triangular lattice. This turns out to be soluble only when a temperature-dependent 
algebraic relation is satisfied by the Boltzmann weights. If the Boltzmann weights are 
varied so as to satisfy this relation then the model undergoes an F-model type of transi- 
tion in the sense that an infinite-order singularity occurs in the free energy. 

Here we consider another triangular ice-type model which turns out to be soluble 
for all temperatures. It has a phase transition similar to the square lattice KDP model. 

Arrows are placed on the bonds of a triangular lattice so that there are three entering 
and three leaving each vertex. There are twenty possible vertex configurations. If 
configurations in which all arrows are reversed are identified then there are the ten 
distinct configurations shown in figure 1. With the vertices are associated the energies : 
e , = 0 ,  e i = r > O ( i = 2 , 3  ,..., 10). 

We consider a triangular lattice of M rows, each row having N/2 vertices and with 
cyclic boundary conditions as indicated in figure 2. The partion function is 

= x e x p [ s )  
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Figure 1. Ten possible reversal-symmetric vertex configurations with corresponding energies. 
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Figure 2. Numbering of the bonds on a specific row of the lattice. 

where p is the number of vertices of types 2,3,. . . , lo,  and the sum extends over all 
allowable configurations on the lattice. The free energy per vertex 9 is given by - 

L -/?9 = lim -1nZ. 
N + W  M N  
M-. w 

Set U = exp( - c /kT) .  We find that there is a phase transition when U = & which cor- 
responds to a critical temperature 

c T , = -  
k In 3’ 

When T < T,  the free energy is zero. When T > T,  the free energy is given by the 
principal value integral 

where 

2 c o s 4  = -&i=i, * < 4 < n  (4) 

(see figure 3). The behaviour of the free energy near and above T, is given by 

-fi9 = - 3ln3(  --1 T ) +-(ln3)3/2 (: -- 1)3’2 + ... .  
4 T  

The internal energy at the transition is at, and the leading behaviour of the specific heat 
is 

- 112 

C, N *(ln 3)’/’( z- 1) . 
16n T,  

The critical exponent c1 is therefore ). 
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Figure 3. Plot of the free energy with temperature showing the behaviour at the critical 
temperature. 

2. The transfer matrix 

We solved this problem by the transfer matrix method. The numbering of the bonds is 
shown in figure 2. The lower row of non-horizontal bonds will be regarded as the 
incoming row and the upper row of non-horizontal bonds as the outgoing row. The 
number n,  of down arrows in each row of bonds, is conserved, ie is the same for the 
outgoing row as the incoming row. 

Proceeding in the usual way (Lieb 1967a, b, Sutherland 1967, Baxter 1972), let 
X = ( x l , .  . . , x,} be the positions of the down arrows in a row. Further letf(X) be the 
element of the eigenvector of the transfer matrix corresponding to the configuration X, 
and A the eigenvalue. Then the eigenvalue equation for A andfis 

A f ( X )  = 5 . . . 5 f(Y)D,(X, Y) 
y 1 = l  y z = x i  y , = x & - 1  

N 
+ 5 2 . . .  f(Y)D,(X, Y)+C, 

(7) 

where 

@ even) 

cv odd) 
(9) 

x - 1  (x  even) 

x - 2  (x  odd) 
x ’ = {  y“ = 

The term C, is a correction term which removes the double counting of some con- 
figurations. 
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3. The Bethe ansatz 

We try a modified Bethe-type ansatz (Lieb 

f(x) = c AV) exp( ikp(j+ 
P j =  1 

967a, b) 

where the sum is over all permutations P = {P(I), P(2), . . . , P(n)} of the n integers 
1,2,. . . , n. When (10) is substituted into the right-hand side of (7) we obtain as usual 
three types of terms : wanted terms of same form as the left-hand side, internal unwanted 
terms containing factors of the form exp[ikp(j,(x; + xi+ 1)], and boundary terms indepen- 
dent of either x i  or x;. 

Equating wanted terms gives 

where Ai and p i  are given by 

(Zi + 1) [(1+ Zi)U - 11 
( U Z i  - l ) Z ,  

( Z i +  l)u 

2 .  = 

p i  = (UZi - 1)Zi 
2 i k ,  z i = e  . 

The internal unwanted terms in (7) vanish if 

A(. . ., iJ,. . .) = -  zizj+zj-u-'zi+ 1 
zizj+zi-u--zj+ 1' 

B(ki ,  k j )  = 
A(. . . , j ,  i,. . .) 

Equation (1 5 )  is actually four equations which arise by requiring the internal unwanted 
terms in (7) to cancel. Fortunately in this model, as in the F model, the equations are 
identical. The vanishing of the boundary terms imposes the condition 

We now have n equations to solve for the n ki and by using equations (1 I), (12), (13) and 
(14) we can calculate A in the n subspace. 

4. The model in the limit N 4 00 

We are interested in the behaviour of the model as N +. 00 and the corresponding 
limiting maximum eigenvalue A. We obtain the free energy per vertex from A by 

2 
i ~ + m  N 

-/W = lim -1nA. 
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4.1. Low temperature (T  < T,) 
When the temperature is below the critical temperature it is particularly easy to calculate 
the maximum value of A. 

Since 0 < U < 1 it is clear from equations (12) and (13) that lulil < Ipil. When T < T,  
we have U < 3 which implies, by (13), that Ipil < 1. Therefore in the low temperature 
region IAI is a non-increasing function of n. The maximum value is therefore attained 
at n = 0 ;  ie A = uN”+l .  In the limit of N large A 5: 1 and 

9 = 0. (18) 

4.2. High  temperature (T > T,) 
The solution in this region is not so straightforward. Guided by previous solutions 
(Lieb 1967a, b, Southerland 1967), we assume that as we increase N keeping n / N  fixed 
the k i  will be continuously distributed in some real interval (-a, a)  with the density 
function p(k). In order to put the problem into the form of an integral equation with a 
difference kernel we make the transformation 

from k to a. The parameter 4 is given by 2 cos 4 = -Jw, & < 4 < n. In the 
limit of N and n large the equations (15) and (16) then imply 

where 

-2 sin 24  
= cosh 2a +cos 24  

2 sin 2 4  
cosh 2a -cos 24’ 

K(a) = 

R(a) is the density function of the ai  such that p(k) dk = R(a) da. We wish to solve (20) 
for R(a). This can be done by Fourier transforms when b = CO, giving 

and n = & N .  Following Yang and Yang (1966) and Lieb (1967b) we expect this value 
of n to correspond to the maximum eigenvalue. The ki occupy the interval (4 - n, n - 4). 
When 5 < U < 1, luAil < lpil and therefore A = 111=1 p i  for large N .  We can therefore 
write 

W 

In A = N j- R(a) In p(a) da. 

Substituting expression (23) for R(a), performing the integration with respect to a, and 
using (13), (14) and (17) we obtain the result stated in equation (3) for the free energy. 
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5. Extension to more general vertex energies 

We have considered the general case of arbitrary energies c l ,  c 2 , .  . . , c l 0  for the ten 
reversal-symmetric pairs of vertex configurations represented in figure 1. We find that 
an appropriate Bethe-type ansatz works only if certain conditions are satisfied. Un- 
fortunately these conditions are, in general, temperature dependent. We intend to 
present these results in a subsequent paper. 
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